skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brown, Cade"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Dense linear algebra (DLA) has historically been in the vanguard of software that must be adapted first to hardware changes. This is because DLA is both critical to the accuracy and performance of so many different types of applications, and because they have proved to be outstanding vehicles for finding and implementing solutions to the problems that novel architectures pose. Therefore, in this paper we investigate the portability of the MAGMA DLA library to the latest AMD GPUs.We use auto tools to convert the CUDA code in MAGMA to the Heterogeneous-Computing Interface for Portability (HIP) language. MAGMA provides LAPACK for GPUs and benchmarks for fundamental DLA routines ranging from BLAS to dense factorizations, linear systems and eigen-problem solvers. We port these routines to HIP and quantify currently achievable performance through the MAGMA benchmarks for the main workload algorithms on MI25 and MI50 AMD GPUs. Comparison with performance roofline models and theoretical expectations are used to identify current limitations and directions for future improvements. 
    more » « less